Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In ecological speciation, incipient species diverge due to natural selection that is ecologically based. In flowering plants, different pollinators could mediate that selection (pollinator-mediated divergent selection) or other features of the environment that differ between habitats of 2 species could do so (environment-mediated divergent selection). Although these mechanisms are well understood, they have received little rigorous testing, as few studies of divergent selection across sites of closely related species include both floral traits that influence pollination and vegetative traits that influence survival. This study employed common gardens in sites of the 2 parental species and a hybrid site, each containing advanced generation hybrids along with the parental species, to test these forms of ecological speciation in plants of the genus Ipomopsis. A total of 3 vegetative traits (specific leaf area, leaf trichomes, and photosynthetic water-use efficiency) and 5 floral traits (corolla length and width, anther insertion, petal color, and nectar production) were analyzed for impacts on fitness components (survival to flowering and seeds per flower, respectively). These traits exhibited strong clines across the elevational gradient in the hybrid zone, with narrower clines in theory reflecting stronger selection or higher genetic variance. Plants with long corollas and inserted anthers had higher seeds per flower at the Ipomopsis tenuituba site, whereas selection favored the reverse condition at the Ipomopsis aggregata site, a signature of divergent selection. In contrast, no divergent selection due to variation in survival was detected on any vegetative trait. Selection within the hybrid zone most closely resembled selection within the I. aggregata site. Across traits, the strength of divergent selection was not significantly correlated with width of the cline, which was better predicted by evolvability (standardized genetic variance). These results support the role of pollinator-mediated divergent selection in ecological speciation and illustrate the importance of genetic variance in determining divergence across hybrid zones.more » « less
-
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet , which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.more » « less
-
Summary Vegetative traits of plants can respond directly to changes in the environment, such as those occurring under climate change. That phenotypic plasticity could be adaptive, maladaptive, or neutral.We manipulated the timing of spring snowmelt and amount of summer precipitation in factorial combination and examined responses of specific leaf area (SLA), trichome density, leaf water content (LWC), photosynthetic rate, stomatal conductance and intrinsic water‐use efficiency (iWUE) in the subalpine herbIpomopsis aggregata. The experiment was repeated in three years differing in natural timing of snowmelt. To examine natural selection, we used survival, relative growth rate, and flowering as fitness indices.A 50% reduction in summer precipitation reduced stomatal conductance and increased iWUE, and doubled precipitation increased LWC. Combining natural and experimental variation, earlier snowmelt reduced soil moisture, photosynthetic rate and stomatal conductance, and increased trichome density and iWUE. Precipitation reduction reversed the mortality selection favoring high stomatal conductance under normal and doubled precipitation, and higher LWC improved growth.Earlier snowmelt is a strong signal of climate change and can change expression of leaf morphology and gas exchange traits, just as reduced precipitation can. Stomatal conductance and SLA showed adaptive plasticity under some conditions.more » « less
An official website of the United States government
